拨开荷叶行,寻梦已然成。仙女莲花里,翩翩白鹭情。
IMG-LOGO
主页 文章列表 在R中创建条件虚拟变量列

在R中创建条件虚拟变量列

白鹭 - 2022-03-24 2073 0 0

我正在使用一个跨国面板资料集,我的一个变量 ( cc_dummy) 的值是 1 和 0(NAs 也表示缺失值)。我想创建一个新列,如果cc_dummy每个国家/地区连续三年取值 1,我只希望每个三年视窗的第一年取值 1,而其他年份取值 0。快照我的资料如下。任何帮助,将不胜感激。如果可能,我想使用 dplyr 创建列。

structure(list(country = c("Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina", 
"Argentina", "Argentina", "Argentina", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", "Brazil", 
"Brazil", "Brazil"), year = c(1975, 1976, 1977, 1978, 1979, 1980, 
1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 
1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 
2014, 2015, 2016, 2017, 2018, 2019, 2020, 1975, 1976, 1977, 1978, 
1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 
1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021), 
    cc_dummy = c(NA, NA, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, NA, NA, 0, 0, 1, 0, 
    1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
    0, 0, 0)), row.names = c(NA, -93L), class = c("tbl_df", "tbl", 
"data.frame"))

uj5u.com热心网友回复:

这是一种使用data.table::rleiddplyr语法的方法:

library(dplyr)
df %>% 
  group_by(country, m = data.table::rleid(cc_dummy)) %>% 
  mutate(newcol = ifelse(n() >= 3 & cumsum(cc_dummy) == 1, 1, 0))

# A tibble: 93 x 5
# Groups:   country, m [32]
   country    year cc_dummy     m newcol
   <chr>     <dbl>    <dbl> <int>  <dbl>
 1 Argentina  1975       NA     1      0
 2 Argentina  1976       NA     1      0
 3 Argentina  1977        0     2      0
 4 Argentina  1978        0     2      0
 5 Argentina  1979        0     2      0
 6 Argentina  1980        0     2      0
 7 Argentina  1981        1     3      0
 8 Argentina  1982        1     3      0
 9 Argentina  1983        0     4      0
10 Argentina  1984        1     5      0
11 Argentina  1985        0     6      0
12 Argentina  1986        0     6      0
13 Argentina  1987        1     7      1
14 Argentina  1988        1     7      0
15 Argentina  1989        1     7      0
16 Argentina  1990        0     8      0
17 Argentina  1991        0     8      0
18 Argentina  1992        0     8      0
19 Argentina  1993        0     8      0
20 Argentina  1994        0     8      0
21 Argentina  1995        0     8      0
22 Argentina  1996        0     8      0
23 Argentina  1997        0     8      0
24 Argentina  1998        0     8      0
25 Argentina  1999        0     8      0
26 Argentina  2000        0     8      0
27 Argentina  2001        0     8      0
28 Argentina  2002        1     9      0
标签:

0 评论

发表评论

您的电子邮件地址不会被公开。 必填的字段已做标记 *