我正在尝试使用 kerastuneR 来实作此代码,以便进行超自变量调整。
library(keras)
library(tensorflow)
library(kerastuneR)
library(dplyr)
x_data <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
x_data2 <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
build_model = function(hp) {
model = keras_model_sequential()
model %>% layer_dense(units=hp$Int('units',
min_value=32,
max_value=512,
step=32),
input_shape = ncol(x_data),
activation='relu') %>%
layer_dense(units=1, activation='sigmoid') %>%
compile(
optimizer= tf$keras$optimizers$Adam(
hp$Choice('learning_rate',
values=c(1e-2, 1e-3, 1e-4))),
loss='binary_crossentropy',
metrics='accuracy')
return(model)
}
tuner = RandomSearch(
build_model,
objective = 'val_accuracy',
max_trials = 5,
executions_per_trial = 3,
directory = 'my_dir',
project_name = 'helloworld')
tuner %>% search_summary()
# Fit
tuner %>% fit_tuner(x_data,y_data,
epochs=5,
validation_data = list(x_data2,y_data2))
所以这段代码运行良好,期望最后一段代码给出这个错误:
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Objective value missing in metrics reported to the Oracle, expected: ['val_accuracy'], found: dict_keys(['loss', 'acc', 'val_loss', 'val_acc'])
那么任何人都可以帮助如何解决这个错误吗?
uj5u.com热心网友回复:
该错误为您提供了解决问题的关键。您需要将生成的键的名称fit_tuner
与提供给RandomSearch
函式的键的名称相匹配。尝试在函式中用 'val_accuracy' 代替 'val_acc' RandomSearch
。
0 评论