我在连接这些 Pandas 资料帧时遇到了麻烦,因为我不断收到错误讯息,说pandas.errors.InvalidIndexError: Reindexing only valid with uniquely valued Index objects
我也在尝试让我的代码不那么笨拙并运行更流畅。我还想知道是否有办法使用 python 在一个 csv 上获取多个页面。任何帮助都会很棒。
import requests
from bs4 import BeautifulSoup
import pandas as pd
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36'}
URL = "https://www.collincad.org/propertysearch?situs_street=Willowgate&situs_street_suffix" \
"=&isd[]=any&city[]=any&prop_type[]=R&prop_type[]=P&prop_type[]=MH&active[]=1&year=2021&sort=G&page_number=1"
t = URL "&page_number="
URL2 = t "2"
URL3 = t "3"
s = requests.Session()
data = []
page = s.get(URL,headers=headers)
page2 = s.get(URL2, headers=headers)
page3 = s.get(URL3, headers=headers)
soup = BeautifulSoup(page.content, "lxml")
soup2 = BeautifulSoup(page2.content, "lxml")
soup3 = BeautifulSoup(page3.content, "lxml")
for row in soup.select('#propertysearchresults tr'):
data.append([c.get_text(' ',strip=True) for c in row.select('td')])
for row in soup2.select('#propertysearchresults tr'):
data.append([c.get_text(' ',strip=True) for c in row.select('td')])
for row in soup3.select('#propertysearchresults tr'):
data.append([c.get_text(' ',strip=True) for c in row.select('td')])
df1 = pd.DataFrame(data[1:], columns=data[0])
df2 = pd.DataFrame(data[2:], columns=data[1])
df3 = pd.DataFrame(data[3:], columns=data[2])
final = pd.concat([df1, df2, df3], axis=0)
final.to_csv('Street.csv', encoding='utf-8')
uj5u.com热心网友回复:
怎么了?
如前所述@Zach Youngdata
已经保存了您想转换为一个资料帧的所有行。所以这不是一个问题,pandas
更多的是如何收集信息的问题。
怎么修?
基于您问题中的代码的一种方法是选择更具体的表资料 - 请注意tbody
选择中的,这将排除标题:
for row in soup.select('#propertysearchresults tbody tr'):
data.append([c.get_text(' ',strip=True) for c in row.select('td')])
在创建资料框时,您可以另外设定列标题:
pd.DataFrame(data, columns=[c.get_text(' ',strip=True) for c in soup.select('#propertysearchresults thead td')])
例子
这将展示如何迭代包含您的表格的网站的不同页面:
import requests
from bs4 import BeautifulSoup
import pandas as pd
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36'}
URL = "https://www.collincad.org/propertysearch?situs_street=Willowgate&situs_street_suffix" \
"=&isd[]=any&city[]=any&prop_type[]=R&prop_type[]=P&prop_type[]=MH&active[]=1&year=2021&sort=G&page_number=1"
s = requests.Session()
data = []
while True:
page = s.get(URL,headers=headers)
soup = BeautifulSoup(page.content, "lxml")
for row in soup.select('#propertysearchresults tbody tr'):
data.append([c.get_text(' ',strip=True) for c in row.select('td')])
if (a := soup.select_one('#page_selector strong a')):
URL = "https://www.collincad.org" a['href']
else:
break
pd.DataFrame(data, columns=[c.get_text(' ',strip=True) for c in soup.select('#propertysearchresults thead td')])
输出
物业编号 ↓ 地理编号 ↓ | 业主姓名 | 物业地址 | 法律说明 | 2021年市场价值 | |
---|---|---|---|---|---|
1 | 2709013 R-10644-00H-0010-1 | PARTHASARATHY SURESH & ANITHA HARIKRISHNAN | 12209 Willowgate Dr Frisco, TX 75035 | Panther Creek Phase 2, Blk H, Lot 1 的 Ridgeview | 513,019 美元 |
... | ... | ... | ... | ... | ... |
61 | 2129238 R-4734-00C-0110-1 | 赫弗·阿伦 | 990 Willowgate Dr Prosper, TX 75078 | Willow Ridge 第一期,Blk C,Lot 11 | 509,795 美元 |
uj5u.com热心网友回复:
通常一个人会遍历页码并连接一个资料框串列,但如果你只有三页,你的代码就可以了。
因为for row in ...
总是写入data
,你的最终资料帧是 df1,但你只需要洗掉列命名的行。
final = df1[df1['Property ID ↓ Geographic ID ↓']!='Property ID ↓ Geographic ID ↓']
uj5u.com热心网友回复:
而不是你的最后几行代码:
df1 = pd.DataFrame(data[1:], columns=data[0])
df2 = pd.DataFrame(data[2:], columns=data[1])
df3 = pd.DataFrame(data[3:], columns=data[2])
final = pd.concat([df1, df2, df3], axis=0)
final.to_csv('Street.csv', encoding='utf-8')
您可以使用它(避免切片到不同的资料帧和串联):
final = pd.DataFrame(data[1:], columns=data[0]) # Sets the first row as the column names
final = final.iloc[:,1:] # Gets rid of the additional index column
0 评论