拨开荷叶行,寻梦已然成。仙女莲花里,翩翩白鹭情。
IMG-LOGO
主页 文章列表 编辑距离问题的每一个解都可以显示在动态规划算法得到的矩阵上吗?

编辑距离问题的每一个解都可以显示在动态规划算法得到的矩阵上吗?

白鹭 - 2022-01-24 2268 0 0

我在 Youtube 上观看了一段视频,解释了如何通过从动态规划算法获得的矩阵的最后一个单元格回传 1 来计算使用了哪些操作以及使用了多少次。虽然我理解视频中的示例,但当我尝试使用其他示例时,我无法做到。是否可以在矩阵上显示每个解决方案?我还在最后添加了计算矩阵的代码。

假设我们的词是"apple""paper"

从动态规划算法获得的矩阵(我使用了 Levensthein 距离运算。):

编辑距离问题的每一个解都可以显示在动态规划算法得到的矩阵上吗?

“apple”和“paper”的最小编辑距离为 4。

解决方案之一是 4 次替换操作。

1. a pple -> p pple(将“a”替换为“p”)

2. p p ple -> p a ple(将“p”替换为“a”)

3. pap l e -> pap e e(将“l”替换为“e”)

4. pape e -> pape r(将“e”替换为“r”)

矩阵解法:

编辑距离问题的每一个解都可以显示在动态规划算法得到的矩阵上吗?

是否可以在此矩阵上显示其他解决方案?

例如:

1. apple -> papple(插入“p”)

2. papple -> paple(去掉“p”)

3. paple -> pape(去掉“l”)

4.纸 -> 纸(插入“r”)

代码:

def min_edit_count(word1, word2):

    word1 = ' '   word1     #
    word2 = ' '   word2     # add a space before original words

    len_w1 = len(word1)     #
    len_w2 = len(word2)     # calculate the lengths of new words

    edit_matrix = np.zeros((len_w2, len_w1), dtype = int)
    # create a matrix with all zeros

    edit_matrix[0, :] = range(len_w1)  
    # assign numbers from 0 to len_w1 in the first row of the edit_matrix 
    edit_matrix[:, 0] = range(len_w2)
    # assign numbers from 0 to len_w2 in the first column of the edit_matrix 

    for i in range(1, len_w2):
        for j in range(1, len_w1):
            # edit_matrix[i-1][j] --> remove
            # edit_matrix[i][j-1] --> insert
            # edit_matrix[i-1][j-1] --> replace

            temp1 = edit_matrix[i-1][j]   1
            temp2 = edit_matrix[i][j-1]   1
            # add 1 to edit_matrix[i-1][j] and edit_matrix[i][j-1]

            temp3 = edit_matrix[i-1][j-1]   1 if word1[j] != word2[i] else edit_matrix[i-1][j-1]
            # if last characters are same don't add 1 to edit_matrix[i-1][j-1].
            # no need to replace

            edit_count = min(temp1, temp2, temp3)
            # find min between three numbers
            edit_matrix[i][j] = edit_count

    min_edit = int(edit_matrix[len_w2 - 1, len_w1 - 1])
    # minimum edit count is the last number calculated
    
    return min_edit, edit_matrix

uj5u.com热心网友回复:

是的,您可以从最后回溯可能有助于解决方案的单元格。
复杂性是O((n m) * num_solutions).

def getSolutions(edit_matrix, word1, word2):
  pos = [] 
  def backtrack(i,j):
    pos.append((i,j))
    if i==0 and j==0:
      # This is a solution
      print(pos)
    if i>0 and edit_matrix[i-1,j]   1 == edit_matrix[i,j]:
      backtrack(i-1,j)
    if j>0 and edit_matrix[i,j-1]   1 == edit_matrix[i,j]:
      backtrack(i, j-1)
    if i>0 and j>0 and (edit_matrix[i-1][j-1]   1 if word1[j] != word2[i] else edit_matrix[i-1][j-1]) == edit_matrix[i,j]:
      backtrack(i,j)
    pos.pop()
  backtrack(len(word1) - 1,len(word2) - 1)

uj5u.com热心网友回复:

基于 Sorin 的好回答,这里有一个稍微增强的版本,它已修复以适合您的索引,并列印在每种情况下需要完成的编辑操作:

def get_solutions(edit_matrix, word1, word2):
  pos = []
  sol = []
  def backtrack(i,j):
    pos.insert(0, (i,j))
    if i==0 and j==0:
      # This is a solution
      print(str(pos)   ": "   str(sol))
    if i>0 and edit_matrix[i-1,j]   1 == edit_matrix[i,j]:
      sol.insert(0, "insert "   word2[i])
      backtrack(i-1,j)
      sol.pop(0)
    if j>0 and edit_matrix[i,j-1]   1 == edit_matrix[i,j]:
      sol.insert(0, "remove "   word1[j])
      backtrack(i, j-1)
      sol.pop(0);
    if i>0 and j>0 and edit_matrix[i-1][j-1]   1 if word1[j] != word2[i] else edit_matrix[i-1][j-1] == edit_matrix[i,j]:
      if (word1[j] != word2[i]):
        sol.insert(0, "replace "   word1[j]   " with "   word2[i])
      else:
        sol.insert(0, "skip")
      backtrack(i-1,j-1)
      sol.pop(0)
    pos.pop(0)
  word1 = ' '   word1
  word2 = ' '   word2
  backtrack(len(word2) - 1,len(word1) - 1)

示例输出

count, matrix = min_edit_count("apple", "paper")
get_solutions(matrix, "apple", "paper")

然后看起来如下:

[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['insert p', 'skip', 'skip', 'remove p', 'remove l', 'skip', 'insert r']
[(0, 0), (0, 1), (1, 2), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['remove a', 'skip', 'insert a', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (1, 0), (2, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['insert p', 'skip', 'remove p', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5)]: ['replace a with p', 'replace p with a', 'skip', 'remove l', 'skip', 'insert r']
[(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 5)]: ['remove a', 'skip', 'replace p with a', 'replace l with p', 'skip', 'insert r']
[(0, 0), (1, 0), (2, 1), (3, 2), (4, 3), (5, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'replace p with e', 'replace l with r', 'remove e']
[(0, 0), (1, 0), (2, 1), (3, 2), (4, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'replace p with e', 'remove l', 'replace e with r']
[(0, 0), (1, 0), (2, 1), (3, 2), (3, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'skip', 'remove p', 'replace l with e', 'replace e with r']
[(0, 0), (0, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5)]: ['remove a', 'skip', 'insert a', 'skip', 'replace l with e', 'replace e with r']
[(0, 0), (1, 0), (2, 1), (2, 2), (3, 3), (4, 4), (5, 5)]: ['insert p', 'skip', 'remove p', 'skip', 'replace l with e', 'replace e with r']
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]: ['replace a with p', 'replace p with a', 'skip', 'replace l with e', 'replace e with r']

//fun: 你可以试着看看为什么每一行都有相同的长度 :D

标签:

0 评论

发表评论

您的电子邮件地址不会被公开。 必填的字段已做标记 *